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Abstract—The title problem was discussed from a viewpoint of continuum damage mechanics.
By assuming that both the plastic and the creep damages are governed by the formation and
the growth of the grain boundary cavities, the states of plastic and creep damages caused by
these cavities were first represented in terms of a symmetric second-rank damage tensor. The
interaction between these two kinds of damage was formulated by establishing the evolution
and the constitutive equation of the damaged materials on the basis of the experimental ob-
servations on microscopic mechanisms of these damages and their mechanical effects reported
so far. Finally, the effects of material damage induced by prior plastic strain in tension, compres-
sion and torsion at room temperature on the subsequent creep and creep rupture process of
Nimonic 80A at 750°C were analysed by these equations, and the validity and the limitations
of the proposed theory were discussed by comparing the numerical resuits with the corre-
sponding experimental ones. It was observed that the proposed theory not only described well
the significant reduction of creep strength and creep rupture time brought about by the preceding
plastic deformation at room temperature, but it also represented adequately the anisotropic
features of plastic and creep damages.

1. INTRODUCTION

Elastic—plastic deformations in polycrystalline metals and alloys often induce internal
damage of materials{1-5]. This internal damage usually occurs by the nucleation and
growth of various microscopic cracks and cavities produced by the deformation. Such
elastic—plastic damage, therefore, not only gives significant influence on the mechanical
properties of materials but also causes material deterioration, such as reduction of
ductility, rigidity, strength, remaining life time, etc. The problems of elastic-plastic
damage, therefore, have been the objectives of a number of works from metallurgical
and continuum mechanics points of view[1-5]. Particularly, the effects of elastic—plastic
damage at room temperature on the subsequent creep behaviour of the materials have
been discussed in a series of the experimental and the theoretical papers of Dyson and
Rodgers[6], Dyson, Loveday and Rodgers[7] and Hayhurst, Trampczynski and
L.eckie[8].

The elastic-plastic damage not only has salient anisotropy just like the creep dam-
age but also has much more complicated microscopic mechanisms than the creep dam-
age; these mechanisms depend strongly on the type of stress variation. Thus,
unlike the case of creep damage, systematic modelling of the elastic—plastic damage
from a continuum mechanics point of view[9-12] is rather scarce, and no general an-
isotropic theories capable of describing the coupled effects of the elastic~plastic and
the creep damages have been developed so far.

The present paper is concerned with the formulation of the coupled phenomena
of plastic and creep damages in polycrystalline metals by describing the anisotropic
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damage states in terms of a damage tensor of rank two[13-16). The evolution and the
constitutive equations are developed by incorporating the experimental observations
on the mechanisms of these damages and their mechanical effects reported so far. The
validity and the limitations of the proposed theory are discussed by analysing the creep
damage process of Nimonic 80A subjected to prior plastic strain of tension and torsion,
and by comparing these results with the corresponding experimental ones. This problem
was analysed also by Hayhurst ef al.[8] in the framework of isotropic damage theory.

2. FORMULATION OF COUPLED PHENOMENA OF PLASTIC DAMAGE AND
CREEP DAMAGE

The elastic-plastic damage at the temperature range of significant slip or grain
boundary sliding mostly develops by the formation of various grain boundary cavi-
ties[17~21]. The grain boundary cavities, in turn, are induced by the intersection of
slip with a grain boundary or with precipitates on a grain boundary, or by the blocking
of grain boundary sliding due to triple points, ledges or impurity particles on the grain
boundaries, together with the resulting stress concentration[7, 18, 21]. Therefore, the
orientation and the arrangement of these cavities depend largely on the direction of
the applied stress. Dyson, Loveday and Rodgers[7], for example, observed micro-
structural changes of Nimonic 80A caused by plastic prestrains of tension, compression
and torsion by means of a high-voltage electron microscope, and they found the for-
mation of profuse submicrometer cavities, mainly on grain boundaries parallel to the
maximum principal stress direction.

The cavities as a result of creep damage, on the other hand, are induced by the stress
concentration due to grain boundary sliding at various irregularities on the boundaries
such as grain corners, triple points, ledges, steps and impurity particles{22, 23]. These
cavities develop most markedly on grain boundaries perpendicular to the maximum
principal stress direction and show salient anisotropy[17, 22~25]. In some cases, es-
pecially for relatively high stresses, creep cavities are observed also on grain boundaries
parallel to the direction of maximum shearing stress[34].

The elastic—plastic damage mentioned above has been discussed in the framework
of continuum damage mechanics by several authors. Broberg{26] and Hult[27], for
example, extended the creep damage theory of Kachanov-Rabotnov{28] to include the
time-independent elastic—plastic damage under uniaxial states of stress. Lemaitre and
Chaboche{2] and Lemaitre[3], on the other hand, developed another theory of one-
dimensional elastic~plastic damage by defining a damage variable in terms of the change
of elastic modulus of the material and by postulating a threshold stress o, for the
initiation of time-independent damage. If we assume the isotropy of the damage states,
these theories may be readily generalized to multiaxial states of stress. However, for-
mulation of a more elaborate anisotropic damage theory requires us to describe the
damage states by means of a more proper damage variable. In the following, we will
develop an anisotropic plastic damage model by modifying the creep damage theory
of Murakami and Ohno[14], which describes the anisotropic damage states in terms of
a second-rank symmetric damage tensor . Though the second-rank tensor £} cannot
describe the damage states with more complicated symmetry than orthotropy{12], it
facilitates the feasible modelling of anisotropic damage because of its mathematical
simplicity.

If we restrict our attention to plastic damage due to grain boundary cavities, the
plastic damage as well as the creep damage is characterized by cavity distribution at
grain boundaries. Then the damage states of the material may be expressed as a sum
of the plastic damage tensor ¥ and the creep damage tensor 03¢ as follows:

Q=07+ Q°, N

where the damage tensor ) may be interpreted as an internal state variable which
represents the three-dimensional area density of the grain boundary cavities[14]. Then
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if we assume that the mechanical effects of this internal damage may be found in net

area reduction due to cavity formation, the effects of the Cauchy stress o are magnified
to the corresponding net stress tensor 8 given by

S=(od + D)2, d=(1-Q)", )

where the tensor @ defines the magnification of the Cauchy stress o as a result of
material damage{14]; it will be called a damage effect tensor hereafter.

There may be two approaches to describe the evolution of the above damage
tensor; one is to specify a damage surface in stress or strain space[9-12], while the
other is to formulate directly the evolution equations of damage by taking account of
the microscopic mechanisms of the cavity growth and their mechanical effects[8, 14,
29, 30]. As regards the former approach, in particular, Krajcinovic and Fonseka[l1]}
introduced a damage surface f = f(e, w) in strain space by representing the damage
state of brittle materials in terms of a cavity density vector w; they formulated the
evolution equations of damage by employing f as a potential surface of the damage
rate. A similar notion was discussed also by Dragon and Mréz[10] by use of a second-
rank crack density tensor  proposed by Vakulenko and Kachanov([31] together with
a damage surface g(o, ) or k(e, Q) in stress or strain space. In these theories, though
the formuiation of the evolution equation of damage variables is systematic and straight-
forward once the damage surfaces are specified properly, the determination of the
shapes of the damage surfaces themselves and their variations need a number of damage
tests and is considerably difficult. Regarding the plastic and creep damage mentioned
above, on the other hand, the microscopic as well as the macroscopic features of the
cavity growth have been elucidated sufficiently. Hence, in the following, we will take
the second approach to formulate the evolution equations of the damage tensors QF
and Q€ of eqn (1).

Let us first observe that both the damage tensors 27 and ¢ represent the cavity
area density produced by the grain boundary cavitations, and that the grain boundary
cavitations are governed by the increase of the time-independent plastic strain €” and
the time 1, respectively. If the effect of stress and damage on the rate of damage growth
are expressed only through S and @ of eqn (2), the evolution equations of the plastic
and creep damages may be given as

dQ” = HES, @, €, €°) de”, (3a)
dQc = HEES, ®, €°, ) dt, (3b)

where € denotes the creep strain tensor.
In particular, when the plastic deformation at room temperature develops under
proportional loading, eqn (3a) can be integrated and leads to the form

OF = HA(e). 4

Let us first recall that the tensor 2 implies the area density of the grain boundary
cavities induced in the damage process. Then if we further note the experimental results
of Dyson et al.[6, 7] and observe that the cavities under proportional loading mainly
develop on grain boundaries parallel to the principal stress direction (also, principal
plastic strain direction), eqn (4) can be readily specified as

3
QF = ¥I + 3 MO0 @ vh), (5a)

iwm]

where y* and MP? are a scalar function and a fourth-rank tensor function of the plastic

strain €. The symbols v*?, I and ® in eqn (5a), furthermore, denote the principal

plastic strain direction of €, the unit tensor and the tensor product, respectively.
The explicit form of the evolution egn (3b), on the other hand, can be furnished
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again from the experimental observations on creep damage process mentioned
above[17, 22-25] and may be expressed in an analogous form[14]:

3 3
Qc = ~C + 2 MED[pCD @ yCI] 4 2 NEDEP ® v}, (5b)

i=1 Jj=1

where ¥¢, MY, N¢U are a scalar function and fourth-rank tensor functions of S, @,
€” and €, respectively. The symbols <@ and v5Y denote the principal directions
corresponding to the positive principal values of S and its deviatoric tensor Sp.

Finally, if we assume that the effects of stress and damage on the creep of the
damaged materials are expressed only through S and ® of eqn (2), the constitutive
equation of creep of the materials has the form

€ = G(S, d, €, €°). (6)

3. CONSTITUTIVE AND EVOLUTION EQUATIONS OF CREEP DAMAGE

3.1. Formulation of constitutive and evolution equations
As observed from Fig. 1, creep of Nimonic 80A at 750°C under constant tension
or constant torsion does not show any apparent primary creep stage but leads to the
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Fig. 1. Creep curves of Nimonic 80A at 750°C (unprestrained): (a) uniaxial tension; (b) torsion.
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secondary stage from the beginnifig. If we assume that the creep rate in‘an undamaged
state is governed by the flow rule and the equivalent stress of von Mises type and by

Norton's law, the creep constitutive equation of damaged materials can be expressed
in the form

€ = 3A(SeQ)" "' Sp» (7a)
Sgq = (Btr §p)'2, (7b)

where Sgq denotes the equivalent stress of S, and A and n are material constants.
Now, let us again note the metallurgical observations on the creep damage process
reported so far{22-25, 32] and assume that the creep damage process is characterized
by the formation of plane cavities on the grain boundary perpendicular to the maximum
principal stress direction. Then eqn (5b) can be expressed in the more explicit form

0OF = BU;S‘" + (1 - DSk Q}"{tr(d)vc‘” @vcu))]z(vcm ® vcm), ®)

where 5V and v°" denote the maximum principal stress and the corresponding
direction of §; B, &, { and { are material constants.

According to the previous results of the creep damage tests on thin-walled copper
tubes at 250°C[16], because of intrinsic anisotropy of creep cavity formation, the ro-
tation of the principal stress direction prolongs the creep rupture times markedly in
comparison with the creep rupture times under constant combined stress. The evolution
equation (8) has been found to predict this trend adequately.

3.2. Comparison between the theoretical and the experimental results
on creep damage process

Dotted or dashed curves of Figs. 1(a) and (b) show the results of tensile and tor-
sional creep tests on thin-walled tubes of Nimonic 80A at 750°C. The creep curves for
tensile stress o = 154 and 309 MPa in Fig. 1(a) and that for torsional stress Vir =
309 MPa have been reproduced from Dyson and McLean’s paper{33], while the creep
curves for torsional stress V31 = 234 and 297 MPa in Fig. 1(b), respectively, are due
to Dyson et al.[7] and Hayhurst e al.[8]. All the creep curves in Fig. 1 have been
obtained on specimens of the identical size and subject to the identical heat treatment,
and hence no significant scattering is observed among these curves.

Solid lines in Fig. 1, on the other hand, represent the theoretical curves fitted by
eqgns (7) and (8) to the corresponding experimental curves. Calculations of eqns (7) and
(8) were performed by use of the following material constants:

A
B

1

9.14 x 107", = 456, [ = 0.6, ©)
1732 x 107, k=50, 1= -23,

#

where the units for stress and time are MPa and hr. The material constants of eqn (9)
were determined in the following way.

Figure 2, to begin with, illustrates the relation between the equivalent stress ¢ and
the equivalent minimum creep rate ¢,, constructed from the creep rates of Fig. 1. The
values of n and A of eqn (9) are determined from the slope and intercept of the straight
line log @ ~ log &, in this figure. Figure 3, furthermore, shows the relation between
the creep rupture time 7g and the stress measure

o* = a0y + (1 — )7 (o = 0.6) (10

obtained from Fig. 1, where o, and a denote the maximum principal stress and a material
constant. The constants £ and B of eqn (9) were evaluated from the slope and the
intercept of the straight line log o* — log 1z of this figure. The value of {, furthermore,
has been determined so that the rupture times for constant combined stress tests pre-
dicted by eqn (8) and the above values of B and & may be fit best to the corresponding
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Fig. 2. Relation between equivalent stress and equivalent minimum creep rate.

experimental values. Finally, value of / was determined so that the tensile creep curves
of Fig. 1(a) may be described most adequately by eqns (7)~(9).

As observed in Fig. 1(a), eqns (7) and (8) describe properly the creep curves of
uniaxial tension as a whole. There is some discrepancy in the rupture times for o =
309 MPa; it is because the material constants of eqn (9) have been determined with
emphasis on the rupture times for o = 154 MPa and those for torsional creep curves
of Fig. 1{(b).

Figure 1(b), on the other hand, shows that eqns (7) and (8) predict the rupture times
of torsional creep tests accurately. However, as regards the creep behaviour, though
eqns (7) and (8) can simulate the creep curves of the secondary stage, they give con-
siderably smaller creep rates for the tertiary stages. This discrepancy can be accounted
for partly by the stress state dependence of the cavity growth mode; i.e. the cavity
density is smaller in torsion than in tension(7] (see Section 4.1). The mechanical effects
of finite deformation and the effects of the third invariant of the deviatoric stress tensor
on creep deformation may be also another source of the discrepancy.

Finally, in order to estimate the validity of eqns (7) and (8) applied to nonsteady
states of stress, Fig. 4 compares the creep curves of the reversed torsion creep tests
reported by Hayhurst ez al.[8] with the corresponding predictions of eqns (7) and (8).
Let us first compare the experimental curves of Fig. 4 with those of Fig. 1(b) of the
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Fig. 4. Creep curves of Nimonic 80A at 750°C under reversed torsion (unprestrained).

same stress levels. The experimental creep rates of Fig. 4 up to the stress reversals
coincide with those of Fig. 1(b) with accuracy better than 5%. Nevertheless, the creep
rupture times for the constant and the reversed torsion test are tg = 298 hr and 332
hr, respectively, and accordingly the reversed torsion test shows the rupture time about
11% longer than the constant torsion test. This result implies that the prolongation of
the rupture time is attributable to the damage anisotropy (anisotropy of cavity for-
mation) rather than the scattering of the experimental results.

The predicted rupture times of Fig. 1(b) and Fig. 4, on the other hand, are 1z =
300 hr and 363 hr and show the increase of rupture time observed in experiments.
However, as seen in Fig. 4, eqns (7) and (8) give about 10% larger rupture time than
the experiment, and this feature can be accounted for by the simplified assumption on
the cavity growth mode in eqn (8), besides the scattering in experimental results.

4, FORMULATION OF EVOLUTION EQUATION OF PLASTIC DAMAGE

4.1. Experimental observations on plastic damage

Dyson and Rodgers[6] performed tensile creep tests at 750°C on Nimonic 80A
specimens subjected to prior tension at room temperature, and made metallographical
observations on crept specimens by means of an optical microscope. As a result of
these tests, a number of grain boundary cavities were observed in the crept and the
fractured specimens, and the number of these cavities increased with the increasing
magnitude of prestrains. It was also elucidated that these cavities brought about salient
deleterious effects on creep properties, i.e. decrease in creep strength, creep rupture
time and creep ductility (see Figs 6 and 7). ’

In order to explicate the plastic damage under various states of stress, Dyson,
Loveday and Rodgers[7] further made a series of quantitative observations by means
of a 1-MV electron microscope on Nimonic 80A specimens, subjected to prior plastic
strains under tension, compression and torsion and then annealed for two hours at
750°C. They found that, though profuse submicrometer grain boundary cavities were
produced by any of these three stress states and the numbers of cavities per unit volume
were functions of the effective prior plastic strain, the cavity density for a given effective
plastic strain was the largest for tension prestrain and decreased in the order of torsion
and compression. Then it was also revealed that most of these cavities were formed
on those grain boundaries parallel to the maximum principal stress direction and, hence,
had pronounced anisotropy. This anisotropy in cavity formation, furthermore, was
more salient for torsional prestrain than tensile and compressive ones. Because of such
anisotropy of plastic damage, forward pretorsion and reverse pretorsion have signifi-
cantly different effects on the subsequent torsional creep (see Fig. 7).
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4.2, Representation of plastic damage state in Nimonic 80A and its specialization

As mentioned above, plastic deformations at room temperature have various
effects on the subsequent creep properties of Nimonic 80A. For accurate description
of creep in such prestrained materials, it is necessary first to quantify appropriately
the internal states of damage induced by the plastic deformation.

Let us now assume that the states of plastic damage can be described by a second-
rank symmetric damage tensor £)° of eqn (5a). From the viewpoint of continuum dam-
age mechanics, this damage variable is interpreted as a macroscopic internal state var-
iable averaged over a small element in the material; its mechanical effect on macro-
scopic phenomena is usually identified only through macroscopic physical quantities,
and it is not straightforward to correlate the damage variable with the results of the
micrographical observations reported by Dyson ez al.[7, 33]. Thus, we will now evaluate
the variable 2 from the creep rupture times in the subsequent creep tests observed
in Figs 6 and 7.

If we recall the assumption of eqn (1), the creep damage equation (8) in uniaxial
state with tensile plastic prestrain has the form

QF = Blo*/(1 - QF*'] = Ble*/1 - QF - Q”)M}.' (1n

Integrating eqn (11) with-the initial condition Q€ = 0 at r = 0, and taking account of
the rupture condition } = Q¢ + QF = 1att = 1z, we readily obtain the creep rupture
time (tg)e» of prestrained materials as follows:

(tr)er = (1 = QOY+*Y[Bk + | + 1)d*]. (12)

The creep rupture time (#z)o of unprestrained materials, in particular, can be furnished
from eqn (12) by taking QF = 0:

(trdo = VIBk + 1 + 1)d*]. (13)

Thus, eqns (12) and (13) enable us to specify the plastic damage Q° in the following
form:

QF = 1 = [(tr)erl(tr)e] "+ !+ D, (14)

A similar relation is obtained also for the creep rupture tests under torsion after
torsional prestrain, and eventually we have the following relation for simple states of
stress:

QF = 1 ~ [(tRertr)o] "4+ 7, (15

where (7g)er denotes the creep rupture time under equivalent plastic prestrain €.
Figure § illustrates the relation between plastic damage 2 and equivalent plastic
prestrain €° calculated from eqn (15) and the experimental results of the literature
entered in the figure. Namely, the symbol O in the figure represents the results of
tensile creep tests following tensile plastic prestrains{6], while the symbols A, (1, A
and M are those of torsion creep tests after torsional prestrains{[7, 8] shown in Fig. 7.
As observed in this figure, the plastic damage 0" increases with the increase of
the equivalent plastic prestrain € in any cases of tension and torsion. In the case of
tensile prestrain, in particular, the log ¥ — log €” relation can be represented by a
straight line. However, for a given value of equivalent plastic prestrains, the plastic
damage for torsional prestrain (symbols A, O, A and W) are somewhat smaller than
those for tensile prestrain (symbol O). This trend coincides with the metallographical
observations of Dyson et al.[7] mentioned above, which revealed that the number of
grain boundary cavities produced by tensile prestrain was larger than that produced
by torsional prestrain. From a continuum mechanics point of view this trend can be
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Fig. 5. Relation between plastic damage and equivalent plastic prestrain at room temperature.

expressed as the dependence of plastic damage on the second and the third invariants
of the deviatoric plastic strain tensor defined as follows:

Ky = delel, K = defiehek. (16)

The second characteristic observed in Fig. 5 is the significant difference between
plastic damage (}” due to reverse plastic pretorsion (A, ) and that of forward plastic
pretorsion (A, W). This can be accounted for by a significant influence of the interaction
between anisotropies of plastic and creep damages on creep rupture times. As men-
tioned already, submicrometer cavities due to plastic damage are formed mostly on
grain boundaries paralle! to the maximum principal stress direction. In view of this
oriented nature of cavity arrangement together with the above-mentioned trend, eqn
(5a) can be specialized in the following form:

P o f(Ka, K;)[v”m ® PP 4 PO vP(:&)} + g(Kz, Kl )
= f(Ky, Kl = vF" @ v"V] + g(Ka, Ki)L

The first term on the right-hand side of this equation represents the anisotropic effect
of the grain boundary cavities, while the second term describes the isotropic feature
of the plastic damage.

As simple and explicit forms of the functions f and g of eqn (17), we can take
f(K2, K3) = FIiK;]*%,  g(K:, K3) = GI4K;1™?, (18)

where F, G, p and v are material constants. For torsional plastic prestrain, eqn (18)
gives g(K,, K3) = 0, and hence eqn (17) provides the largest anisotropy. For tensile
prestrain, on the other hand, we have g(Kz, K,) # 0, and egn (17) describes the isotropic
damage growth as well. Thus, for a given value of equivalent plastic prestrain, the
cavity volume fraction tr Q for tensile prestrain has a larger value than that for torsional
prestrain, so that eqns (17) and (18) describe adequately the characteristic features
observed in the paper of Dyson et al.[7].
The material constants in eqns (17) and (19) were specified as

F = 0806, p=0323, G=107, v=0468 (19)
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The values of G and v among them were obtained from the slope and the intercept of
the log ¥ — log €” relation (Fig. 5) for tensile plastic prestrain. The values of F and
i, on the other hand, were specified so that eqns (15), (17) and (18) may describe the
rupture times for torsional creep subjected to reverse plastic prestorsion.

Finally, we assume that the creep constitutive equation (7) and the evolution equa-
tion of creep damage (8) hold also for the plastically damaged materials:

€€ = 3A(SeqQ)" 'Sp, (20a)
QC = B[);S(I) + (l - C)SEQ]"[[I‘((DVC(” ® 1,C(l))]l (vC(l) ® vC(”). (20b)

In these equations the effects of plastic damage can be described by means of the
relation (1) together with the net stress tensor S and the damage effect tensor @ defined
by eqgn (2). Furthermore, the material constants of eqn (20) are furnished by eqn (9).

5. RESULTS OF CALCULATIONS AND COMPARISON WITH
EXPERIMENTAL RESULTS

We are now in a position to analyse the creep damage process of Nimonic 80A at
750°C subjected to plastic prestrains of tension and torsion at room temperature by
means of the above equations.

Figure 6, to begin with, compares the result of tensile creep tests subjected to
tensile prestrain of €© = 15% with the corresponding prediction of eqns (17)-(20). The
dashed line is the experimental curve obtained by Hayhurst et al.[8], whereas the solid
line is the theoretical curve. In Fig. 6, tensile creep curves of unprestrained (virgin)
materials and the corresponding numerical result are also entered for the sake of com-
parison. For unprestrained materials, in particular, the scale of abscissa has been mag-
nified to 10 times.

As will be seen in the figure, creep property of the prestrained material differs
largely from that of the unprestrained material. For example, the experimental results
for the minimum creep rate é,, of the unprestrained and the prestrained material are
€n =9 x 107¢hr~', 8 x 10~% hr~', respectively, and thus the plastic prestrain of
€’ = 15% magnified the creep rate almost by 10 times. Furthermore, the creep strains
at rupture for the unprestrained and the prestrained material are ex = 18% and 2.7%,
respectively, while the corresponding creep rupture times are tg = 1800 hr and 206
hr. Thus, it will be found that the plastic prestrain markedly curtails the creep ductility
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Fig. 6. Tension creep curves after plastic pretension at room temperature (Nimonic 80A, 750°C).
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and the creep rupture time. Similar trends are observed also for different magnitudes
of plastic prestrain[6].

Equations (17)-(20), on the other hand, describe properly the increase of minimum
creep rates and the decrease of rupture times due to plastic prestrains, as discussed
above, However, these equations tend to give larger creep rates than the experimental
ones in later parts of creep curves and, accordingly, predict larger creep strains at
rupture. Though these discrepancies can be partly accounted for by the possible scat-
tering of the experimental results, they are also attributable to salient localization of
the cavity distribution observed in prestrained materials, which has not been incor-
porated in the present theory. Namely, according to the optical micrography mentioned
already([6], in highly prestrained specimens, a number of crack-like cavities produced
by coalesced r-type cavities were observed in many areas near the fractured surface,
and the cavity densities in these areas were apparently larger than other parts. Such
a localized creep damage induced by larger plastic prestrains may shorten the tertiary
creep stages of prestrained materials and may decrease the creep ductility of these
materials. Therefore, in order to describe the experimental results of Fig. 6 more ac-
curately by the present theory, we must further elaborate eqns (17)-(20) to represent
the difference in damage localization in the unprestrained and prestrained materials.

Figures 7(a) and (b), furthermore, compares similar results for torsional creep
curves of materials subjected to different plastic pretorsions. The dashed curves in the
figures represent the experimental resuits of Dyson er al.[7] and Hayhurst et al.[8],
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Fig. 7. Torsion creep curves after plastic pretorsion at room temperature (Nimonic 80A, 750°C):
(a) V3t = 234 MPa; (b) V31 = 297 MPa.
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while the solid curves are the theoretical predictions due to eqns (17)~(20). The cor-
responding results for the unprestrained material are also entered in the figure.

One of the remarkable features observed in Figs. 7(a) and (b) is a salient dependence
of torsional creep process on the direction of prior plastic torsion. For example, the
experimental results of creep rupture time ¢ for the forward and the reverse pretorsion,
respectively, are g = 311 hr and 207 hr for V37 = 234 MPa and & = 15% [Fig. 7(a)},
and tz = 188 hr and 146 hr for V31 = 297 MPa and & = 2.5% [Fig. 7(b)]. These
differences in rupture times obviously result from the anisotropy in the plastic and the
creep damages and can be explained as follows. As mentioned already, while grain
boundary cavities due to plastic damage are produced mainly on grain boundaries
parallel to the maximum principal stress direction, creep cavities develop mostly on
grain boundaries perpendicular to the maximum principal stress direction. In materials
subjected to forward plastic pretorsion, for example, since the principal stress direction
corresponding to the plastic pretorsion coincides with that for the subsequent torsional
creep, the creep cavities develop on separate planes, which are different from the planes
of significant plastic cavities and are rotated by 90° from them. In the case of reverse
plastic pretorsion, on the other hand, the principal stress direction for the plastic pre-
torsion differs by 90° from that of the torsional creep, and therefore the creep cavities
develop predominantly on the same plane where the preceding plastic cavities have
been produced. Thus, the creep damage process subjected to reverse plastic pretorsion
is accelerated considerably, and the corresponding rupture time is shorter than that of
the forward pretorsion. This marked dependence of the creep damage process on the
direction of prior plastic strain can never be described by isotropic damage theories
developed so far.

On the other hand, the creep rupture times fz calculated from eqns (17)~(20) for
the forward and the reverse pretorsions are 1g = 402 hr and 207 hr, respectively, in
the case of V3t = 234 MPa, & = 15% [Fig. 7(a)}, and tx = 202 hr and 145 hr for
V3t = 297 MPa, € = 2.5% [Fig. 7(b)]. Thus, the present theory predicts properly
the trend of experimental results. However, detailed observation of Fig. 7 shows that
eqns (17)~(20) give the rupture times for forward plastic pretorsion 10-20% larger than
the experiment. These discrepancies can be accounted for by the simplified assumption
in eqn (20) concerning the planes of damage growth, as well as by the assumption of
a simple form of g in eqn (18). Nevertheless, it should be noted that the discrepancies
between theoretical and experimental results of rupture times observed in Fig. 7 are
rather insignificant from a practical point of view.

In contrast to the discrepancies between the theoretical and experimental creep
curves for unprestrained materials, it will be noticed that eqns (17)-(20) describe ap-
parently well the creep curves of prestrained materials as a whole. This trend can be
explained as the counterbalance between the smaller creep rates in the tertiary stage
of unprestrained materials predicted by eqns (17)-(20) and the enhanced creep rates
observed in the prestrained materials due to damage localization. However, these two
separate effects result from the complicated dependence of cavity arrangement (size,
shape, density, anisotropy, nonhomogeneity) on the stress level or the stress state.

The present problem has been analyzed also by Hayhurst, Trampczynski and
Leckie[8]. They modified the quasi-empirical metallurgical theory of Dyson and
McLean[33] by incorporating the effect of grain boundary cavities due to the plastic
prestrain into the evolution equation of the total cavity volume fraction for the sub-
sequent creep damage process, and they succeeded in providing reasonable predictions
to the creep rates and the creep rupture times of the prestrained materials [i.e. to
experimental curves of Figs 6 and 7(b)]. However, their theory postulated isotropic
damage parameter of the cavity volume fraction and could not describe the anisotropic
aspects of the material damage observed in the forward and the reversed creep curves
of Fig. 7(b).

6. CONCLUSIONS

After formulating the coupled phenomena of the plastic and the creep damages of
polycrystalline metals, the effects of the plastic damage induced by various plastic
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prestrains at room temperature on the subsequent creep damage process of Nimonic
80A at 750°C were analysed. The proposed theory not only described adequately the
pronounced decrease in creep strength and creep rupture time, but also represented
anisotropic features in these damages. However, it was found that more accurate simu-

lation of the creep behaviour of the damaged materials will need further elaborate
modelling of damage and creep.t
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